

Small Signal Diodes and Transistors Adjustable Voltage Regulator Zener and ESD-Protection Diodes CLD (Constant Current Regulator)

Power Supply

Input Rectification

HV Rectifier and Avalanche Diodes

Part no	Package	\mathbf{I}_{FAV}	V _{RRM}	E _{RSM}
S1W S2Y	DO-214AB/SMA		1600 2000 V	
S2W S2Y	DO-214AB/SMB		1600 2000 V	
SM516 SM2000	DO-213AB/ Melf		1600 2000 V	
AM2000 ¹) WEW	DO-213AB/ Melf	1 A	1600 V	20 mJ

See also notes on page 4 and 5

Output Rectification

Schottky Diodes

Part no	Package	I _{FAV}	V _{RRM}
SDB13HS, SDB14HS	SOD-323		30 40 V
SKL14 SKL110	SOD-123F		40 100 V
SK14 SK115	SMA		40 150 V
SK34 SK315SMA	SMA		40 150 V

Snubber/Protection

TVS Diodes

Part no	Package	P _{PPM}	V _{WM}	V_{BR}
TGL34	DO-213AA/MiniMelf	150 W	5.5 171 V	6.8 200 V
SMF	SOD-123F	200 W	5.0 220 V	6.8 260 V
TGL41	DO-213AB/Melf	400 W	5.5 423 V	6.8 520 V
P4SMA	DO-214AC/SMA	400 W	5.0 495 V	6.8 550 V
P6SMB	DO-214AA/SMB	600 W	5.0 495 V	6.8 550 V
1.5SMC	DO-214AB/SMC	1500 W	5.0 495 V	6.8 550 V

Ultrafast Diodes

Part no	Package	I _{FAV}	V _{RRM}	E _{RSM}
EGL1G EGL1M	DO-213AA/MiniMelf	1 A	400 1000 V	N/A
EAL1G EAL1M 1)	DO-213AA/MiniMelf		400 1000 V	20 mJ
USL1G USL1M	SOD-123F		400 1000 V	
SUF4004 SUF4007	DO-213AB/Melf		400 1000 V	
US1G US1M	DO-214AC/SMA		400 1000 V	
US3G US3M	DO-214AB/SMC		400 1000 V	

TVS and Ultrafast in a single package!

Part no	Package	Рррм	V_R	V_{BR}
TGL200U06	DO-213AB/Melf (SMD)	300 W	600 V	200 V
PKC-136 NEW	DO-15 (axial lead)	600 W	700 V	160 V

¹ Avalanche rated

Main Circuit Board

Control & Protection

Small Signal Diodes

Part no	Package	I _{FAV}	V _{RRM}	
1N4148WS	SOD-323		100 V	
BAV99	SOT-23	215 mA	85 V	

Small Signal Transistors

Part no	Package	I _C	V _{CEO}
MMBT2222A	SOT-23	600 mA	40 V
BC846C	SOT-23	100 mA	
BC846CW	SOT-323	100 mA	65 V

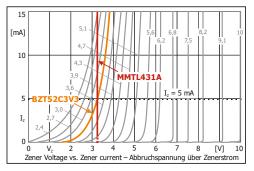
Zener Diodes

Part no	Package	P _{tot}	Vz
MM3Z	SOD-323	300 mW	2.4 47 V
ZMC	Micro Melf	500 mW	
BZT52	SOD-123	500 mW	
ZMM	SOD-80C	500 mW	

CLD (Constant Current Regulator)

Part no	Package	\mathbf{I}_{Pnom}	Vak	
CL15 40MD ²) NEW	DO-213AA/MiniMelf	15 40 mA	90 V	
CL15 40M35	DO-214AC/SMA	15 40 mA	90 V	

ESD Protection


Part no	Package	P _{PPM}	V _{WM}
ESD3Z	SOD-323	350 W	
ESD5Z	SOD-523	158 240 W	

Schottky Diodes

Part no	Package	I _{FAV}	V _{RRM}	
BAT54A	SOT-23	200 mA	30 V	
BAS40-05	SOT-23	200 mA	40 V	

Adjustable Precision Shunt Regulator

Part no	Package	\mathbf{I}_{K}	Vo	
MMTL431A ²) ////////	SOT-23	1 100 mA	2.5 36 V	

Comparison between a low voltage Zener diode BZT52C3V3 and the MMTL431A adjusted to 3.3V: The shunt regulator shows a mostly perfect linearity with very tight tolerance and low temperature dependence.

² Under development

Considerations on the 3~ Input Stage

The $3\sim$ mains voltage a smart meter is connected to can have values of up to 500 V_{RMS}, see Fig 1: *Typical worldwide mains voltages*. This corresponds to a peak voltage V_{PK} of 707 V.

Overlaid surges can lead to much higher voltages V_{PK} than the $\sqrt{2}$ value of V_{RMS} , as shown in the picture. Table 1: *Comparison of input rectifiers* shows two possible cases:

- a) Slow but high energetic surges. A typically used 510 V_{RMS} varistor will clamp such transients to less than 1355 V (refer to industry standard varistor specs).
- b) Very fast transients with less energy. Varistors are rather slow, so the transient can reach the rectifier diode and cause (pre-) damages. Solutions are here either standard rectifier having 2000 V of V_{RRM} , or Avalanche rectifier.

The controlled avalanche breakdown must be as low as possible in order to reduce avalanche energy and thus reliability. A device having 1600 V of V_{RRM} is a good compromise for the needs of Smart Meters: Above the 1355 V varistor clamping voltage and well below 2000 V for low avalanche energies.

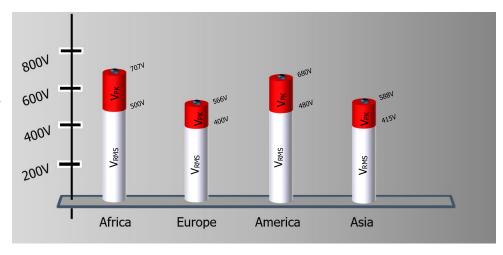


Fig 1: Typical worldwide mains voltages (non-industrial)

Table 1: Comparison of input rectifiers

Device Type	Features	Case a) Slow/high energetic transient	Case b) Very fast/low energetic spike	Judgement
SM2000 (HV Rectifier)	V _{RRM} = 2000 V	2000V 1350V V _{PK} V _{RRM} above varistor clamping voltage	V _{PK} Clamping voltage high V _{PK} ≥ V _{RRM} Risk of device damage!	+ Lower cost- Requires additional protection
Hypothetical Device (HV Avalanche Rectifier)	$V_{RRM} = 2000 V$ $V_{RSM} \ge 2050 V$ Avalanche rated	2000V 1350V V _{PK} V _{RRM} above varistor clamping voltage	Clamping voltage high $V_{PK} = V_{RSM} \ge 2050 \ V$ $E_{RSM} \propto V_{RSM} \ high!$ Risk of device damage!	 Very high cost Requires additional protection Not recommended!
AM2000 (Avalanche Rectifier)	$V_{RRM} = 1600 \text{ V}$ $V_{RSM} \ge 1650 \text{ V}$ Avalanche rated	V _{PK} V _{RRM} above varistor clamping voltage	1650V Clamping voltage low $V_{PK} = V_{RSM} \ge 1650 \text{ V}$ $E_{RSM} \propto V_{RSM} \text{ low!}$ $Improved reliability!$	Higher costBetter reliability

Disclaimer

This application note describes device proposals and shall not be considered as assured and proven solution for any circuit. No warranty or guarantee, expressed or implied is made regarding the capacity, performance or suitability of any device, circuit etc.